216 research outputs found

    Software Tools for ILC Detector Studies

    No full text
    International audienceThis article presents a review on the main issues of the software and computing tools developed ILC Detector related studies. It works out common eïŹ€orts but also diïŹ€erences among the eïŹ€orts within the three diïŹ€erent regions in which the detector R&D is pursued. It outlines the main features of the software packages and highlights results which were obtained by studies obtained within the frameworks. The grid is constantly evolving to be the computing environment for the studies

    A precise determination of top quark electroweak couplings at the ILC operating at 500 GeV

    No full text
    On behalf of the groups at IFIC and LAL and the ILD concept.International audienceTop quark production in the process e+e- -> ttbar at a future linear electron positron collider with polarised beams is a powerful tool to determine the scale of new physics. The presented study assumes a centre-of-mass energy of 500 GeV and an integrated luminosity of 500 fb-1 equally shared between the incoming beam polarisations of (Pe+, Pe-) = (+/-0.8,-/+0.3). Events are selected in which the top pair decays semi-leptonically. The study comprises the cross sections, the forward-backward asymmetry and the slope of the helicity angle asymmetry. The vector, axial vector and tensorial CP conserving couplings are separately determined for the photon and the Z^0 component. The sensitivity to new physics would be dramatically improved with respect to that expected from the LHC for electroweak couplings

    Track identification in SiW ECal

    No full text
    International audienc

    Fast and reasonable Installation, Experience and Acceptance of a Remote Control Room

    Full text link
    Remote control systems are becoming more and more important to give us the flexibility to control facilities, provide assistance and intervene in case of problems at any time and from every place. As a global operating group CALICE [2] with approx. 220 members worldwide is dependent on using a remote control system for shifts and monitoring of the data taking. CALICE has at present installed its detector at Fermilab, Chicago, where will run test beam experiments for the next year. The components of the remote control system and kind of use are presented here.Comment: 4 page

    Mechanisms of isothiocyanate detoxification in larvae of two belowground herbivores, Delia radicum and D. floralis (Diptera: Anthomyiidae)

    Get PDF
    International audienceLike aboveground herbivores, belowground herbivores are confronted with multiple plant defense mechanisms including complex chemical cocktails in plant tissue. Roots and shoots of Brassicaceae plants contain the two-component glucosinolate (GSL)-myrosinase defense system. Upon cell damage, for example by herbivore feeding, toxic and pungent isothiocyanates (ITCs) can be formed. Several aboveground-feeding herbivores have developed biochemical adaptation strategies to overcome the GSL-ITC defenses of their host plant. Whether belowground herbivores feeding on Brassica roots possess similar mechanisms has received little attention. Here, we analyze how two related belowground specialist herbivores detoxify the GSL-ITC defenses of their host plants. The larvae of the fly species Delia radicum and D. floralis are common pests and specialized herbivores on the roots of Brassicaceae. We used chemical analyses (HPLC-MS/MS and HPLC-UV) to examine how the GSL-ITC defense system is metabolized by these congeneric larvae. In addition, we screened for candidate genes involved in the detoxification process using RNAseq and qPCR. The chemical analyses yielded glutathione conjugates and amines. This indicates that both species detoxify ITCs using potentially the general mercapturic acid pathway, which is also found in aboveground herbivores, and an ITC-specific hydrolytic pathway previously characterized in microbes. Performance assays confirmed that ITCs negatively affect the survival of both species, in spite of their known specialization to ITC-producing plants and tissues, whereas ITC breakdown products are less toxic. Interestingly, the RNAseq analyses showed that the two congeneric species activate different sets of genes upon ITC exposure, which was supported by qPCR data. Based on our findings, we conclude that these specialist larvae use combinations of general and compound-specific detoxification mechanisms with differing efficacies and substrate preferences. This indicates that combining detoxification mechanisms can be an evolutionarily successful strategy to handle plant defenses in herbivores

    JRA3 Electromagnetic Calorimeter Technical Design Report

    No full text
    This report describes the design of the prototype for an Silicon Tungsten electromagnetic calorimeter with unprecedented high granularity to be operated in a detector at the International Linear Collider (ILC). The R&D for the prototype is co-funded by the European Union in the FP6 framework within the so called EUDET project in the years 2006-2010. The dimensions of the prototype are similar to those envisaged for the final detector. Already at this stage the prototype features a highly compact design. The sensitive layers, the Very Front End Electronics serving 64 channels per ASIC and copper plates for heat draining are integrated within 2000 ÎŒm

    Cooling dynamics of a dilute gas of inelastic rods: a many particle simulation

    Full text link
    We present results of simulations for a dilute gas of inelastically colliding particles. Collisions are modelled as a stochastic process, which on average decreases the translational energy (cooling), but allows for fluctuations in the transfer of energy to internal vibrations. We show that these fluctuations are strong enough to suppress inelastic collapse. This allows us to study large systems for long times in the truely inelastic regime. During the cooling stage we observe complex cluster dynamics, as large clusters of particles form, collide and merge or dissolve. Typical clusters are found to survive long enough to establish local equilibrium within a cluster, but not among different clusters. We extend the model to include net dissipation of energy by damping of the internal vibrations. Inelatic collapse is avoided also in this case but in contrast to the conservative system the translational energy decays according to the mean field scaling law, E(t)\propto t^{-2}, for asymptotically long times.Comment: 10 pages, 12 figures, Latex; extended discussion, accepted for publication in Phys. Rev.

    Production and Equilibration of the Quark-Gluon Plasma with Chromoelectric Field and Minijets

    Full text link
    Production and equilibration of quark-gluon plasma are studied within the color flux-tube model, at the RHIC and LHC energies. Non-Abelian relativistic transport equations for quarks, antiquarks and gluons, are solved in the extended phase space which includes coordinates, momenta and color. Before the chromoelectric field is formed, hard and semihard partons are produced via minijets which provide the initial conditions necessary to solve the transport equations. The model predicts that in spite of the vast difference between the RHIC and LHC incident energies, once the local equilibrium is reached, the energy densities, the number densities and the temperatures at the two machines may not be very different from each other. The minijet input significantly alters the evolution of the deconfined matter, unless the color field is too strong. For the input parameters used here the equilibration time is estimated to be ∌1\sim 1 fm at RHIC and ∌0.5\sim 0.5 fm at LHC, measured from the instant when the two colliding nuclei have just passed through each other. The temperature at equilibration is found to be ∌250\sim 250 MeV at RHIC and ∌300\sim 300 MeV at LHC.Comment: version to appear in Phys. Rev. C; discussion enlarged to include comparison with other models; conclusions unchanged; 14 single-spaced pages + 8 ps figure
    • 

    corecore